


L. Fink⁽¹⁾, D. Podgorski⁽¹⁾, M.U. Schmidt⁽¹⁾ and T. Hartmann⁽²⁾

A Stoe Stadi P powder diffractometer with Ge(111) monochromator yielding pure $K_{\alpha 1}$ -radiation and the Dectris MYTHEN 1K detector has been chosen for PDF calculation experiments on Naphtalen ($C_{10}H_8$).

For Cu $K_{\alpha 1}$ -radiation the Stoe Stadi P has been equipped with a Dectris MYTHEN 1K with 320 μ m, for Mo $K_{\alpha 1}$ -radiation with a MYTHEN 1K with 450 μ m and for Ag $K_{\alpha 1}$ -radiation with a MYTHEN 1K with 1mm chip size. Synchrotron data has been taken at beamline X17A at NSLS Brookhaven (λ =0.1839Å). PDF calculations calculated with PDFgetX3 [1] yield a $Q_{(obs\ max)}$ of 7.0 Å⁻¹ for Cu-, 11.4 Å⁻¹ for Mo-, 13.1 Å⁻¹ for Ag-K $_{\alpha 1}$ -radiation and 19.5 Å⁻¹ for the synchrotron.

The direct comparison of the PDF curves of the synchrotron (yellow) and the Ag- $K_{\alpha 1}$ - experiment (blue), shows that the resolution of the Ag-data is amazingly similar!

Comparison of the laboratory setup (blue) and the synchrotron experiment (yellow)

Taking into account that $\lambda_{(synchrotron)}$ has been app. ½ of Ag-K $_{\alpha 1}$, the measuring time (Ag-experiment 18h, synchrotron ½h) is more than reasonable for a laboratory setup.

This makes the Stoe Stadi P with Ag-tube and Dectris MYTHEN 1K an impressive alternative to expensive synchrotron experiments.

[1] Juhas, P., Davis, T., Farrow, C.L. and Billinge, S.J.L., J. Appl. Cryst. (2013). 46, 560-566.

⁽¹⁾ Institute of Inorganic and Analytical Chemistry, Goethe-University Frankfurt, Germany.

⁽²⁾ Stoe & Cie GmbH Darmstadt, Germany