POLOS® BEAM

Maskless lithography enables nanopatterning at will, without the need for slow and expensive photomasks. This convenience is especially useful for research and rapid prototyping use. The POLOS® Beam compliments the existing benefits by bringing it to the desktop without any compromise in performance.

The Beam Engine focuses a UV laser beam into a diffraction-limited spot and scans the spot to expose any arbitrary pattern on a photoresist. To expose large wafers, precision steppers move the wafer and allows multiple exposures to be stitched. The Beam Engine is capable of producing features smaller than (CD) 0.8 µm across a 4" wafer.

COMPACT

Full-featured maskless lithography, smaller than a desktop computer.

POWERFUL

Sub-micron resolution while exposes a writefield in less than two seconds.

ULTRAFAST AUTOFOCUS

Piezo actuators reach focus in less than a second when combined with our closed looped focus optics.

NO-FUSS MULTILAYER

Semi-automatic alignment allows multilayer alignment to be completed within minutes.

Array of resist micropatterns on silicon substrate. Each cell is 50 x 63 μ m, with 3 μ m spacing between adjacent patterns. Resist used AZ 5214 E.

The included software makes quick work of any patterning job; just load, align and expose. Navigation is similar to CNC systems

During multilayer exposures, the GDS pattern is overlaid for visualization. The control GUI (left window) has a minimap of the loaded GDS that allows navigation to any area on the wafer with 1 click.

SPECIFICATIONS

Patterning		
Minimum Linewidth		0.8 μm
Minimum Pitch		1.6 µm achievable
Exposure Time		< 2 s for 1 writefield
Maximum writefield		400 μm x 400 μm
Laser Wavelength		405 nm (375 optional)
Galvo	Z-working height	10 mm
	Repeatability	< 100 nm (static)
	Speed	up to 200 mm/s

General			
Accepted file formats		.bmp, .png, .tiff, .gds Custom shapes can directly be drawn in software.	
Software	Patterning	Beam Xplorer	
	Design	KLayout (most powerful), MS Paint/Powerpoint (rapid prototyping)	
Weight		20 kg	
System size		330 x 310 x 340 mm	

Split-ring resonator arrays. The separation distance on the right is 1.5 μm (arrows), separation distance on the left is 2 μm . The outer ring is 80 μm across.

Interdigitated Capacitors (IDCs) with 2 μm fingers. Resist used: AZ5214E.

0.8 μm tapered middle section with 20 x 90 μm contact pads on the side. Resist used: AZ5214E.